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The linear stability analyses described in Mashayek & Peltier (J. Fluid Mech., vol.
708, 2012, 5–44, hereafter MP1) are extended herein in an investigation of the
influence of stratification on the evolution of secondary instabilities to which an
evolving Kelvin–Helmholtz (KH) wave is susceptible in an initially unstable parallel
stratified shear layer. We show that over a wide range of background stratification
levels, the braid shear instability has a higher probability of emerging at early
stages of the flow evolution while the secondary convective instability (SCI), which
occurs in the eyelids of the individual Kelvin ‘cats eyes’, will remain a relevant
and dominant instability at high Reynolds numbers. The evolution of both modes is
greatly influenced by the background stratification. Various other three-dimensional
secondary instabilities are found to exist over a wide range of stratification levels. In
particular, the stagnation point instability (SPI), which was discussed in detail in MP1,
may be of great potential importance providing alternate routes for transition of an
initially two-dimensional KH wave into fully developed turbulence. The energetics of
the secondary instabilities revealed by our simulations are analysed in detail and the
preturbulent mixing properties are studied.
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1. Introduction
In Mashayek & Peltier (2011) (hereafter referred to as MP1) we studied

the competition between various secondary instabilities to which a primary
Kelvin–Helmholtz (KH) billow, which emerges due to instability of a stratified parallel
shear flow, is susceptible. We focused primarily upon two instabilities, namely the
secondary convective instability (SCI) (Klaassen & Peltier 1985) and the secondary
shear instability (SSI) (Corcos & Sherman 1976). The SCI is induced by the
emergence of convectively unstable regions in the billow cores during the roll-up
of a train of KH waves. In MP1 we presented a heuristic model which predicted
the dependence of the Rayleigh number of the core unstable regions (Rau) on the
Prandtl number, Pr , the Reynolds number, Re, and the gradient Richardson number
at the midpoint of the initially parallel shear layer, Ri0. Susceptibility maps were
provided which identified regions in Re–Pr–Ri0 parameter space where the SCI is
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most probable. The non-dimensional control parameters Re, Pr and Ri0 are defined as

Re= U0h

ν
, Pr = ν

κ
, Ri0 = N2

(dŪ∗/dz∗)
2 , (1.1)

where U0 is the reference velocity assumed to be equal to half the velocity difference
across the shear layer, h is half of the shear layer thickness, ν is the kinematic
viscosity, κ is the thermal diffusivity, N is the buoyancy frequency, Ū∗ is the height-
dependent dimensional velocity in the shear layer, and z∗ is the dimensional vertical
co-ordinate measured from the centre of the shear layer.

To study the relative importance (in terms of growth rate) of SSI and SCI, in
MP1 we performed non-separable secondary stability analysis (of Klaassen & Peltier
(1985) type) on one specific case which was chosen (based on the predictions of
the heuristic model) to be in a region in the Re–Ri0 parameter space which lies
between the region in which SSI is not expected to appear and the region in which
this instability is expected to be realized. In this method the flow is assumed to
be periodic in the streamwise direction and is decomposed into a quasisteady, two-
dimensional component which represents the primary KH wave and a small-amplitude
three-dimensional component of the form u3D(x, y, z, t) = u0(x, z) exp[idy + σ t] (with
a similar form for the density field) where u0 corresponds to the velocity of the
background KH wave and d and σ are the spanwise wavenumber and growth rate of
the three-dimensional perturbations. The results described in MP1 demonstrated that
the SSI mode has an excellent chance of growing at an early stage of flow evolution
when the braid length is maximum and before it comes to be suppressed by the growth
of the cores. It was also shown that throughout the life-cycle of the KH wave the SCI
mode had a high probability of emerging. The analyses also revealed the existence
of two other three-dimensional secondary instabilities, namely the stagnation point
instability (SPI) and the secondary vorticity band instability (SVBI). Finite-amplitude
growth of either of these two instabilities could conceivably eliminate or trigger the
onset of SSI by inducing braid deformation.

In this paper we pursue two main goals. First, we further evaluate the predictions
of the heuristic model which describes the dependence of emergence of SCI and SSI
on Re and Ri0 by extending the range of our stability analyses; second, we study the
energetics of the secondary instabilities we have found and explore their contributions
to the early phase of evolution of a KH wave, a phase which is associated with
efficient mixing. Our main goal is to investigate the relative influence of stratification
on the four main modes of instability introduced in MP1 (namely the SCI, SSI, SPI
and SVBI modes). The cases which we will consider in this study are listed in table 1.
The governing equations, domain size, numerical techniques and diagnostic tools to be
employed are identical to those of MP1. Case c1-1000-0.12 was considered in detail
in MP1 and we will frequently refer to it for comparison purposes. Hereafter, when
referring to figures and equations from MP1, we will use the suffix ‘-MP1’ (e.g. figure
1-MP1 means figure 1 from MP1).

In the final section of this paper we analyse the energetics of the secondary
instabilities and their contributions to the preturbulent phase of mixing in an evolving
KH wave. It has been shown (Caulfield & Peltier 2000; Smyth & Moum 2000; Staquet
2000; Smyth 2003 or see Peltier & Caulfield 2003 for a review) that the preturbulent
mixing in KH waves is highly efficient and extends over a considerable period of time
of the life cycle of a KH wave. Therefore, preturbulent mixing contributes significantly
to the overall mixing and is worthy of being studied in detail to partially address
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Case name Grid (Nx× Nz)

c1-1000-0.12 768× 800
c1-2000-0.04 768× 800
c1-2000-0.12 768× 800
c1-2000-0.16 768× 800
c1-2000-0.20 768× 800

TABLE 1. Two-dimensional numerical simulations performed for providing the time
evolution of the background flow, needed by the secondary stability analysis. Similar
to MP1, the flow domain is 30h in the vertical direction and 28.56h in the streamwise
direction. Also similar to MP1, cases are named in the cPr–Re–Ri0 format.
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FIGURE 1. Lexicon of various secondary instabilities discussed in MP1 and in this paper.
Each frame contains the reference to the original study which provides details of its
corresponding instability. The horizontal and vertical axes correspond to x and z coordinates,
respectively. The underlying background KH wave is shown in the first panel to provide the
reference of the KH wave basic state in terms of which the location of each instability is
illustrated in the other frames of the figure.

the variations in mixing efficiency reported in observational studies (Gargett & Moum
1995; Moum 1996; Ruddick, Walsh & Oakey 1997; Smyth, Moum & Caldwell 2001).
Our method of quantifying the mixing will be similar to that of Caulfield & Peltier
(2000) which is an extension of that due to Winters et al. (1995) which itself was built
upon the work of Lorenz (1955).

We repeatedly refer to several secondary instabilities in this paper by referring
to their acronyms. The secondary instability lexicon of figure 1 is provided as a
reference to which the reader may refer if needed. References to the literature will
appear in italics (e.g. MP1) while the acronyms we employ for the suite of secondary
instabilities whose spatial locations within the background wave are illustrated in
figure 1 will not be italicized.
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FIGURE 2. Spanwise vorticity contours at various stages of flow evolution for c1-2000-0.04.

2. Stability analysis for the case c1-2000-0.04
As the first case of interest beyond the single case discussed in MP1 we consider

c1-2000-0.04. Figure 2 shows the evolution of the vorticity field of the flow for
a sequence of times in the course of its evolution. Compared with c1-1000-0.12
(discussed in MP1), this case has a higher Reynolds number and a lower Richardson
number. The figures reveal no trace of SSI, or of any other mechanism of secondary
vortex formation on the braid. By t = 56, the negative vorticity bands in the cores
have grown sufficiently intense and come sufficiently close to the stagnation point
to cause a slight deformation at the centre of the braid. At t ∼ 65, the braid’s
vorticity is exhausted and by t = 70 a braid with vorticity of opposite sign has
formed. This transition marks the onset of the pairing process. Beyond this point, the
pairing instability grows and a strong braid with positive vorticity is re-established. As
figure 2(f ) shows, no sign of SSI is observed even on the postmerging braid. This is
in agreement with the predictions of the heuristic analysis of MP1 for Re = 2000 and
Ri0 = 0.04.

Figure 3 provides a range of flow diagnostics for this case. Figure 3(a) shows the
evolution of the kinetic energy of the KH wave, KKH . The local peak of the curve
at t = 41 identifies the climax time (denoted by t∗) which is the time at which the
background KH wave achieves its maximum kinetic energy. The second episode of
increase in this time series corresponds to growth of the vortex pairing instability.
Figure 3(b) shows the plot of δpair , which represents the horizontal distance between
the tips of the most intense blue vorticity bands inside the cores, a time series which
demonstrates that at t ∼ 65 the vorticity bands meet and merging begins. This is
verified in the plot of 1zcores in figure 3(c) which denotes the differential vertical
deflection of the cores. Figure 3(d) illustrates the evolution of the braid normal
Richardson number at the stagnation point. Even though RiStagB does diminish well
below the value of 0.25, it rapidly recovers thereafter to large values. The Richardson
number drops to a near-zero value at t ∼ 65 due to the draining of vorticity from the
braid. By that time too little remains of the braid to accommodate the SSI. As for the
SPI, figure 5-MP1 shows that this case has too large a value of γs/Ω (where γs is the
strain rate at the stagnation point and Ω is the braid vorticity) for the SPI to grow.
Figure 3(e) shows the time variations of the growth rates for the fastest growing modes
(FGMs) of various secondary instabilities. Comparing the curves for SCI (at d = 8)
and SSI (at d = 0) shows that at early stages of flow evolution (prior to t∗ depicted
approximately by the vertical dashed line in the figure), the SSI has a growth rate
comparable to or even larger than that of the SCI. However, SSI weakens with time
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FIGURE 3. Results for case c1-2000-0.04: (a) kinetic energy of the nonlinear KH wave, KKH ,
normalized by K (0); (b) δpair ; (c) 1zcores; (d) RistagB ; (e) results of the stability analysis for
the FGM of various modes during the flow evolution; and (f ) growth rate versus the spanwise
wavenumber, d, for various modes. Line attributes in (e) are: solid line with filled circles for
SCI at d = 8; solid line with hollow circles for SSI at d = 0; solid line with hollow diamonds
for the pairing instability at d = 0; solid line with stars for SCDI at d = 0; solid line with
filled triangles for SPI at d = 7; and thick dashed line for SVBI at d = 0. The vertical thin
dashed line shows the climax time, t∗.

due to the strain field associated with the vortex cores while SCI strengthens. For most
of the duration of flow evolution, the three-dimensional SCI modes remain dominant
(in terms of growth rate). Comparing the SSI curve in figure 3(e) with the RistagB curve
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FIGURE 4. (a) The density eigenfunction for the fastest growing SCDI mode (d = 0) at
t = 41 overlaid on the vorticity contours; (b) the K ′ eigenfunction for the FGM of the
three-dimensional SPI sequence (d = 7) at t = 70.

in figure 3(d) shows that as the braid stagnation point Richardson number increases
rapidly between t = 30 and t = 50, the growth rate of SSI decreases dramatically.

Other growth rate curves in figure 3(e) include that for the pairing mode, which has
a small growth rate compared with the other instabilities but is long lived, the SVBI
mode which appears only for a limited range of time, the SPI mode which comes into
play at later stages of the flow evolution and a further new instability which was not
revealed in the lower-Reynolds-number analyses of MP1 and which we will refer to
here as the secondary core deformation instability (SCDI). The density eigenfunction
of this mode for time t∗ is shown in figure 4(a) which reveals the tendency of this
mode to inflate the vortex cores. As shown in figure 3(e), this mode has significant
growth rate only for a limited range of time. This mode is oscillatory (i.e. it has a
non-zero σi) and extracts most of its energy from the strain field of the background
flow (i.e. S t in equation (4.13-MP1)).

Figure 4(b) shows the K ′ eigenfunction for the FGM of three-dimensional SPI
(d = 7) at t = 70. Among the various modes considered in figure 3(e), only the pairing,
SSI, SVBI and SCDI modes would be expected to have any chance of emerging in
two-dimensional simulations. Since the growth rate of SSI and SCDI decreases with
time as t→ 65, they do not emerge in our simulation and thus only the pairing
instability is fully realized. In the time window 55 < t < 70 however, the SVBI does
lead to the development of a slight braid deformation as shown in figure 2.

Figure 3(f ) shows the variations in the growth rate of various modes versus the
spanwise wavenumber. All curves are plotted for t∗ except for the SPI curve which
is plotted for t = 70 (SPI is not yet detected at t∗). The fastest growing SCI mode
has a spanwise wavenumber of d = 8 whereas the SPI peaks at d = 7 and the SSI
peaks at d = 2. The SCDI mode is also of a three-dimensional nature but its FGM
is two-dimensional and there is a cut-off wavenumber of d ∼ 2. In the time range
t = 40–55, the first few dominant eigenvalues for small ‘d’ correspond to the SCDI.

3. Stability analysis for the case c1-2000-0.12
We turn our attention next to case c1-2000-0.12. The flow visualizations for the

background flow are presented in figure 5. Once the intense vorticity bands of the core
extend so as to become sufficiently close to the braid, an instability which leads to
deformation of the braid and roll-up of two small secondary vortices occurs. Once the
cores’ vorticity bands reach the braid, the braid vorticity is drained (90< t < 100) and
this marks the onset of pairing. The postpairing braid is prone to SSI as it satisfies
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FIGURE 5. Spanwise vorticity contours at various stages of flow evolution for c1-2000-0.12.

the RiB and γ /Ω conditions required for SSI to grow as discussed in MP1. Even
though the prepairing braid has almost the same RiB value, the suppressing influence
of the strain field inhibits growth of SSI vortices.

Figure 6 presents plots similar to figure 3 for this case. Figure 6(a) shows that
the background KH wave obtains its maximum kinetic energy at t∗ = 59. The second
rise in KKH beyond t = 100 corresponds to the pairing process. Figure 6(b,c) show
that the onset of the pairing instability coincides with the same time that the cores’
blue vorticity bands meet at the braid. Figure 6(d) shows that RistagB decreases almost
uniformly from a value of ∼0.2 at t∗ up to the point when it falls sharply to zero at
t ∼ 85 (due to braid vorticity draining). This time is coincident with the δpair = 0 point
in figure 6(b) and the onset of 1zcores > 0 in figure 6(c). Figure 6(e) shows the results
of the secondary stability analysis for this case. Similar to previous cases, SCI still
obtains the highest growth rate over a wide range of time. However, for a considerable
time period in the early stages (40 < t < 65), the SSI has a growth rate comparable
to the SCI. Here σSSI grows slightly in the time range 40 < t < 65 which is the same
time as the decline in RistagB occurs (figure 6d). Therefore, SSI has a high chance
of emerging at an early stage of flow evolution while its chances rapidly diminish
because of the growing strain field induced by the vortex cores. Nevertheless, the
two-dimensional simulation which has provided the background flow for the stability
analysis of this case does not show emergence of SSI. The secondary vortices formed
on the braid in figure 5 are actually due to the SVBI.

Among the additional instabilities tracked in figure 6(e) is the SCDI which has
a growth rate smaller than the SSI but larger than the pairing instability. All three
of these instabilities are characterized by slight variations in their growth rates with
time. Similar to the previous case, the growth rate of the SPI (for d > ∼8) becomes
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FIGURE 6. Same as figure 3 but for c1-2000-0.12. Line attributes in (e) are: solid line with
filled circles for SCI at d = 10; solid line with hollow circles for SSI at d = 0; solid line with
hollow diamonds for the pairing instability at d = 0; solid line with stars for SCDI at d = 0;
solid line with filled triangles for SPI at d = 11.5; the dashed line for SVBI at d = 0; and the
dotted line with filled squares for LCVI at d = 11.

significant at later stages of flow evolution. Our analysis detects this mode for times
beyond t = 70. Another three-dimensional instability is detected for this case and its
saturated growth rate for d > ∼8 is shown in figure 6(e) as a dotted line with filled
squares. This mode has a continuous spectrum of spanwise wavenumbers ranging from
very small ‘d’ (near zero) to very large values (d = 12 was the upper limit to which
our analyses were extended). Figure 7 shows the eigenfunctions of this instability for
d = 2 (figure 7a) and d = 10 (figure 7b). This instability implies the tendency of
formation of counterclockwise vortices at the tips of the blue (negative) vorticity bands
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FIGURE 7. The density eigenfunction for the fastest growing LCVI mode at t = 81: (a) d = 0
and (b) d = 10.

in the cores. Therefore, we refer to this instability as a localized core vortex instability
(LCVI). Once the vorticity bands have grown large enough in the cores, the LCVI
can emerge provided that the vorticity magnitude is also strong enough inside the
band. The strength of the vorticity bands increases with the stratification (Ri0). That
is why this instability was not detected for the case c1-2000-0.04. Moreover, a higher
Reynolds number also promotes LCVI since it makes the roll-up process faster leaving
less time for the vorticity gradients inside the cores to diffuse. This explains why this
mode was not detected for case c1-1000-0.12. A close look at figure 5 shows that
apart from the positive-vorticity vortices formed on the braid (red vortices), negative
(blue) vortices also form inside the cores which establish the emergence of the LCVI.

Figure 6(f ) plots the variations in the growth rates versus the spanwise wavenumber
for various modes detected for this case. The curves in the plot are made at the
KH wave climax state for SSI, SCI and SDI and at t = 81 for the late emerging
instabilities, SPI and LCVI. Although the σSSI shows small variations with d, the SSI
curve extends to larger values of d compared with the case c1-1000-0.12. This implies
that the scales of motion associated with SSI have become smaller with increase in
the Reynolds number. Figure 6(f ) shows that the growth rates of SPI, SCI and LCVI
all saturate for d > 8 indicating that there will be no preferred wavelength for the
instabilities and that the flow is capable of injecting energy into very small scales of
the motion, facilitating a rapid and direct transition to turbulence.

We should point out that the eigenfunction for the SVBI shown in figure 10-MP1
appears to be a combination of LCVI and SPI at d = 0. There is the possibility
that SVBI is just the long-wave manifestation of these two modes. It should be
noted that detection of the short-wave instabilities (such as the SPI, LCVI and SCI)
by our stability analysis becomes difficult as d→ 0 because such long-wave modes
(such as SSI, pairing and SDI) all dominate the eigenvalue hierarchy for small ‘d’.
However, once d is set to be exactly zero rather than close to zero, a large number
of long-wave but three-dimensional modes are automatically eliminated allowing for
two-dimensional version of SPI to emerge in the analysis. Nevertheless, since the
eigenfunction shown in figure 10-MP1 seems to be effective both in the middle of
the braid and on vorticity bands inside the cores, we choose to keep treating it as an
independent instability.

4. Flow analysis for the case c1-2000-0.16
The flow conditions for this case are close to those of the case (c1-2000-0.12) and

so we do not present the results from the stability analysis for this case.
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Figure 8 shows a sequence of flow visualizations from the simulation of the
two-dimensional background flow for this case. At time t = 100, the corners of
the blue vorticity bands have expanded sufficiently and are strong enough that
a counterclockwise vortex forms in each of these regions. This can be seen in
the enlarged version of the graph overlaid with streamlines for time t = 110. The
formation of these vortices is due to the finite-amplitude growth of the LCVI modes
described in figure 7. It is important to remember that this mode is of a three-
dimensional nature and its FGM a spanwise wavenumber d > 10. Hence, the evolution
of these vortices in our two-dimensional simulation are expected to be significantly
different in a three-dimensional simulation. The presence of these vortices in the blue
vorticity bands leads to a slight deformation of the braid which is just sufficient
to induce formation of secondary shear vortices on the braid. This is seen in the
figure for t = 105. The braid deformation induced by the LCVI continues exciting
generations of multiple secondary vortices on the braid as the flow evolves up to
t = 116. The location of generation of the braid vortices remains quasi-steady up to
t = 110 and, hence, the streamlines and the vorticity fields are aligned. For the pair of
vortices which have already moved to the periphery of the cores at t = 110, however,
the instantaneous streamlines do not follow the vorticity pattern as the vortices are
moving rapidly with respect to the cores. These vortices move along the periphery of
the cores, deform the vorticity layers and lead to enhanced mixing inside the cores.
In the meantime, the vortices formed at the corner of the large blue vorticity bands
(due to LCVI) diffuse. The vorticity contour at t ∼ 110 establishes the emergence of
the SVBI in the flow (which again can be interpreted as a combination of the SPI and
LCVI in the d→ 0 limit).

5. Stability analysis for the case c1-2000-0.2
As the last case to which we will apply our methodology for secondary stability

analysis, we consider c1-2000-0.2. The vorticity contours at different stages of the
flow evolution for this case are plotted in figure 9. Owing to the very high level of
stratification, the maximum amplitude of the KH wave is small compared with the
previous cases we have considered. The corresponding t∗ for this case is t = 116. As
the flow visualizations demonstrate, no significant modification of the flow field by
secondary instabilities occurs. At a time near t ∼ 175 the braid vorticity draining event
occurs and the onset of the pairing instability is marked. Although it is not clearly
observed in the last panel of the figure, the pairing instability is well underway at
t = 259 and a new positive vorticity braid has formed once more. The growth rate of
the pairing instability is very weak, however, due to the suppressing influence of the
stratification. As shown in the figure, for t > 150, the upper and lower positive (red)
vorticity bands which mark the outer limits of the two cores almost connect allowing
for an alternate way of transporting vorticity between the cores. Although this was
also observed for the c1-2000-0.12 and c1-2000-0.16 cases, the connection seems to
be stronger for this case.

Figure 10 shows the results of the stability analysis for this case. Since most
secondary instabilities seem to be suppressed by the stratification (based on the two-
dimensional simulation of the background flow), we focus on four main instabilities
namely SCI, SPI, SSI and pairing. Comparing the curves for σSCI and σSSI shows that
the SCI is still the dominant instability (in terms of growth rate) by far. Comparing
the SSI curve with that of the previous case (c1-2000-0.12) shows that because of the
suppressing influence (due to both the evolution of the strain field and shortening of



Secondary instabilities in shear layers 55

(g)

(h)

(i )

(b)(a)

(d)(c)

( f )(e)

FIGURE 8. Vorticity contours at various stages of flow evolution of case c1-2000-0.16.
Streamlines are superposed on an enlarged view of the braid in (g–i). The colourbar is the
same as figure 2.

the braid as a result of the growth of the cores) of the growth of the cores on the
braid, the SSI is enhanced with increase in the stratification. Based on figure 10 we
conclude that SCI and SPI will most probably break down this flow into turbulence in
a three-dimensional case with the possibility of LCVI playing an important role.

Apart from the major instabilities discussed in figure 10, a continuous spectrum
of LCVI modes was also detected for d > 0 for times beyond t∗. Similar to case
c1-2000-0.12, the growth rates of LCVI, SCI and SPI all saturate for d > 8.

Figure 9(a) shows that locations where the strongest negative (blue) vorticity bands
in the two cores meet the braid (at t = 132) are separated by some distance in contrast
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FIGURE 9. Vorticity contours at various stages of flow evolution for c1-2000-0.2.
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FIGURE 10. Growth rate of various instability modes obtained from the stability analysis for
case c1-2000-0.2: solid line with filled circles for SCI at d = 9; solid line with hollow circles
for SSI at d = 0; solid line with hollow diamonds for the pairing instability at d = 0; and solid
line with filled triangles for SPI at d = 10. The vertical thin dashed line corresponds to t∗.

to previous cases where the two locations coincided at the stagnation point. Therefore,
the eigenfunctions corresponding to the SPI are considerably different from those of
previous cases. To show this, we plot the eigenfunctions for the FGM of the SPI for
d = 10 at t = 149 in figure 11(a) and for the d = 0 mode at t = 166 in figure 11(b).
Both panels show the tendency of the cores’ vorticity bands to deform the braid at
two locations. The distance between the two locations decreases with time leading
to their ultimate merging at the stagnation point (LCVI to SPI transition). It should
also be noted that SCDI is not detected for this case implying the possibility of total
suppression of it due to enhanced stratification and the smaller sizes (associated with
high Ri0) of the vortex cores.

6. A summary of the effects of stratification upon the mechanisms of
turbulent collapse

To summarize the influence of stratification on the dominant secondary instabilities
that could play significant roles in the transition to fully developed turbulence,
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FIGURE 11. Vorticity contours of the case c1-2000-0.2 overlaid with density eigenfunctions
of the (a) fastest growing d = 10 SPI mode at t = 149 and (b) fastest growing d = 0 SPI mode
at t = 166.

figure 12 plots the growth rates for SCI, SSI, SPI and pairing instabilities for the
three cases considered in this study plus the additional case considered in MP1. To
allow for direct comparison between this sequence of cases, the zero of time is centred
on the instant at which the background KH wave achieves its maximum kinetic energy
(the climax state) for each case. For the corresponding spanwise wavenumbers of the
SCI and SPI modes shown in the figure, see figures 3, 6 and 10 from this article and
figure 17-MP1. The SSI and pairing modes are for d = 0 as their FGMs are nearly two
dimensional (see MP1 for a discussion).

Figure 12(a) compares σSCI for the four cases. All curves are characterized by an
increasing–decreasing pattern in agreement with the evolution of the Rayleigh number
of statically unstable regions, Rau, inside the cores (MP1). Comparing the three
Re = 2000 cases, the SCI becomes stronger as the Richardson number is increased
from 0.04 to 0.12 due to increased density difference across the core unstable regions,
1ρu, at higher Ri0 (remembering that Rau ∝1ρu). As Ri0 is increased from moderate
values (0.12) to very high values (0.2), however, σSCI is suppressed considerably due
to the decrease in the rate of evolution of the primary KH wave. This increase in the
characteristic time scale allows for increased diffusion of the density difference across
the core unstable regions hence diminishing the tendency for overturning. Moreover,
at high Ri0, the thickness of the unstable region is sharply reduced due to smaller
amplitude of the KH billows. This further contributes to a smaller Rau (Rau ∝ δu

ρ
3).

Comparing the curve for cases c1-1000-0.12 and c1-2000-0.12 shows that an increase
in the Reynolds number leads to an increase in the σSCI as predicted by the heuristic
model in MP1. Figure 12(b) compares σSSI for all four cases. At early stages of the
KH wave evolution σSSI is largest and it diminishes with time due to the core-induced
flow field surrounding the braid. Therefore, secondary shear vortices have a much
greater chance of emerging at early stages of the KH roll up for a wide range of
stratification levels. Comparing the three Re = 2000 cases, similar to the SCI, σSSI

grows larger from Ri0 = 0.04 to Ri0 = 0.12 and decreases from Ri0 = 0.12 to Ri0 = 0.2.
As the braid Richardson number, RiB, is inversely proportional to Ri0, an increase in
Ri0 from 0.04 to 0.12 leads to a smaller RiB promoting the chances of occurrence of
SSI. As Ri0 tends from 0.12 to 0.2 however, the suppressing influence of the flow field
induced by the growing cores increases leading to a smaller growth rate. Comparing
the curve for cases c1-1000-0.12 and c1-2000-0.12 shows that an increase in the
Reynolds number enhances the probability of SSI as expected based on the heuristic
model of MP1.
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FIGURE 12. (Colour online) Comparison between the growth rates of various instabilities for
the three cases considered by the stability analysis in this study plus the one case considered
in MP1. Growth rates are for: (a) SCI; (b) SSI; (c) pairing instability; and (d) SPI. The
line attributes in each panel are: thick solid line for case c1-2000-0.04; dashed line for case
c1-2000-0.12; dash–dotted line for case c1-2000-0.2; and thin solid line (overlain by dots) for
case c1-1000-0.12 from MP1. Each curve is shifted by its corresponding t∗ so then all curves
start from the instant of maximum KKH .

Figure 12(c) compares σpairing for all four cases. Comparing the range of the vertical
axis in this panel with the other three panels shows that the growth rate of the pairing
instability does not vary much for moderate to high values of Ri0 and from Re= 1000
to Re = 2000. The sensitivity to the Reynolds number in particular seems to be very
weak. The variation in σpairing follows the same trend as the other instabilities in
figure 12: increase from small stratification to moderate stratification, and decrease
from moderate to high stratification.

Figure 12(d) shows that σSPI becomes highly significant at later stages of flow
evolution and once the cores’ vorticity bands become sufficiently close to the
stagnation point to induce the perturbation necessary for the onset of SPI. The growth
rate of the SPI, according to the results of our analyses is very sensitive to both Ri0

and Re. Here σSPI also increases from Ri0 = 0.04 to Ri0 = 0.12 and decreases from
Ri0 = 0.12 to Ri0 = 0.2. Comparing the c1-1000-0.12 and c1-2000-0.12 curves shows
that an increase in the Reynolds number leads to a considerable increase in σSPI .

In general, figure 12 shows that σSCI > σSPI > σSSI > σpairing. This hierarchy should
not be taken to imply which instability should dominate because the spatial locations
and the time ranges over which the instabilities persist do not necessarily overlap and
their growth rates do not remain constant over time. Moreover, onset of one instability
may trigger or inhibit emergence of another. According to the figure, increase in the
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Reynolds number enhances the growth rates of all secondary instabilities as well as the
spanwise wavenumber of the FGM.

7. Energetics of secondary instabilities and their contributions to preturbulent
mixing

It has been demonstrated previously that the mixing efficiency is high (close to
unity) during the period of time prior to onset of fully developed turbulence (Winters
et al. 1995; Caulfield & Peltier 2000; Smyth et al. 2001, as reviewed in Peltier &
Caulfield 2003). This is a consequence of the small dissipation rate during this phase
of flow evolution. Since the preturbulent phase occupies a significant portion of the
total life cycle of a KH wave, when the initial conditions include only weak noise, we
intend in this section to quantify the contributions of the newly discovered instabilities
which can exist in the laminar phase of the flow to the preturbulent mixing. We also
investigate the reservoirs from which secondary instabilities extract their energies.
To examine the influence of the braid instabilities on the mixing process, we
compare cases with no significant braid activity (cases c1-1000-0.12, c1-2000-0.04
and c1-2000-0.2) with cases with braid deformation and vortex formation on the braid
(c1-2000-0.12 and c1-2000-0.16).

Following Caulfield & Peltier (2000), the time rate of change of the total mechanical
energy of the system under consideration, E, can be written as

dE

dt
= dK

dt
+ dP

dt
, (7.1)

where K and P are the total kinetic and potential energies, respectively. The kinetic
energy is defined as

K = 〈([(u2 + w2)/2]〉xz, (7.2)

and the potential energy is

P = Ri0

R
〈zρ (z)〉xz, (7.3)

where R is the ratio of the characteristic scale of velocity variation to that of the
density variation and 〈 〉i represents averaging over co-ordinate i. The rate of change of
the kinetic energy can be written as

dK

dt
=−Ri0

R
〈ρw〉xz −

1
Re
〈(∇u)2〉xz (7.4)

=−H +D, (7.5)

where H is the buoyancy flux, and D is a negative-definite term which represents the
loss of kinetic energy of the system to internal energy through viscous dissipation. The
time rate of change of the potential energy can be written as

dP

dt
=H +Dp, (7.6)

where Dp, a strictly positive quantity, is the rate at which the potential energy of a
statically stable and motionless density stratification would increase through conversion
of internal energy to potential energy. It can be calculated from the expression

Dp = Ri0(ρbottom − ρtop)
hRePr

, (7.7)
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where ρbottom and ρtop are the non-dimensionalized densities at the top and bottom
boundaries and h is the vertical extent of the flow domain (30 non-dimensional units
in our simulations). Equation (7.5) demonstrates that the total kinetic energy of the
system can be decreased through a positive H , which corresponds to a relative net
upward motion of dense fluid. This leads to an increase in the potential energy of
the system as expressed by (7.6). The reverse follows for a negative H . Apart from
the transfer of energy between the kinetic and potential energy reservoirs through the
buoyancy flux, total energy can be lost to internal energy by two mechanisms, namely:
loss of kinetic energy through viscous dissipation (D) and loss of potential energy
through Dp. In other words, combining (7.1), (7.5) and (7.6) gives

dE

dt
=D +Dp, (7.8)

where the right-hand side is negative definite and |D | � |Dp|.
The potential energy itself can be divided into two parts namely the background

potential energy, PB, defined as

PB = Ri0

R
〈zρB (z)〉z, (7.9)

and the available potential energy, PA. So, we have

P =PB +PA. (7.10)

The background density profile ρB(z) is the profile associated with the minimum
potential energy that the system can obtain if allowed to come to rest in an adiabatic
fashion. The resulting profile is a stable density profile which decreases monotonically
upward (Winters et al. 1995; Caulfield & Peltier 2000). Here PB can only be
increased through irreversible mixing processes denoted by M and through Dp as

dPB

dt
=M +Dp. (7.11)

Combining this with (7.6) and (7.10) we may therefore write

dPA

dt
=H −M =S . (7.12)

The available potential energy is that part of the total potential energy which is
‘available’ to be converted back to kinetic energy. Hence, the right-hand side of (7.12),
S , simply represents the reversible stirring of the flow whereas the right-hand side of
(7.11) represents irreversible mixing. Using the definitions of mixing and stirring, and
by combining (7.5) and (7.12) we may therefore write

dK

dt
=−S −M +D, (7.13)

which provides a more transparent interpretation of (7.5): the kinetic energy can be
changed through stirring of the fluid, irreversible mixing of the fluid, or viscous
dissipation. We note that the right- and left-hand sides of (7.5) can be independently
calculated from the density and velocity fields at each instant of the flow evolution.
Hence, the agreement between the left- and right-hand sides acts as an independent
measure of the accuracy of our simulations. For all of the cases considered in this
work, this criterion was satisfied to one part in 104 (after non-dimensionalizing both
sides of (7.5) by dividing them by K ).
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The first term on the right-hand side of (7.13) represents a reversible process
whereas the two last terms represent irreversible processes. Hence, an instantaneous
mixing efficiency can be defined as the ratio of the rate at which kinetic energy is lost
to mixing, and the rate at which it is lost to both mixing and dissipation:

Ei = M

M −D
. (7.14)

By definition, Ei is smaller than one. Similar to Caulfield & Peltier (2000), the
cumulative mixing efficiency (a quantity which can be used for comparison to
experiments) is defined as

Ec =

∫ t

0
M (t′) dt′∫ t

0
M (t′) dt′ −

∫ t

0
D(t′) dt′

. (7.15)

Figure 13(a) shows plots of the time variations of the total kinetic energy of
the system for the cases considered in this study plus c1-1000-0.12 from MP1.
Figure 13(b) shows the evolution of the corresponding kinetic energy of the primary
KH wave for each case. The corresponding potential energies for each case are also
shown in figure 18. During the early stages of flow evolution, the total kinetic energy
of the system decreases rapidly due to the roll-up of the KH billow. The kinetic energy
lost is stored in the cores in the form of potential energy due to the net upward
motion of heavy fluid (a positive buoyancy flux). Even though the total kinetic energy
decreases with time, the kinetic energy associated with the KH wave itself, KKH (for
the formula (4.16-MP1)), grows during this period. So, the KH billow extracts its
energy from the background flow. Once the billows saturate, the variations in P , K
and KKH become small up until the onset of the pairing process. Once the pairing
gets underway, a second sharp decrease in K occurs which again amounts to an
increase in the potential energy and also in KKH . Comparing the Re = 2000 curves
in figure 13(a,b) shows that as the Richardson number increases from 0.04 to 0.12,
the decrease in K (and, hence, the increase in KKH) becomes more extreme. This is
because in this range, the billow amplitude does not change significantly with Ri0 and
therefore more energy is required to lift the heavier fluid (at higher Ri0) upward. From
Ri0 = 0.12 to 0.16 and 0.2, however, the decrease in K (and the increase in KKH)
becomes smaller due to the significant reduction in the KH billow amplitude at high
levels of stratification which amounts to less net upward displacement of heavy fluid.
Since the maximum billow amplitude is primarily a function of Ri0, the evolution of
the cases c1-1000-0.12 and c1-2000-0.12 are similar at early stages and up to the point
when secondary vortices form on the braid in c1-2000-0.12. This can be verified by
comparing the K curves corresponding to the two cases (thick and thin solid lines in
figure 13a).

As shown in figure 5 for c1-2000-0.12, at 90 < t < 100 the braid deforms at its
centre and two vortices form upon it. The thick solid curve in figure 13(a) shows
that this coincides with an increase in the total kinetic energy. Figure 18(c) also
shows that this is coincident with a decrease in the potential energy (which can be
verified by comparing the solid and thin lines). So, even though the primary KH
billow extracts its energy from the kinetic energy of the shear layer, the secondary
instabilities growing on the braid extract their energy from the potential energy stored
in the KH billow.
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FIGURE 13. (a) Total kinetic energy, K , normalized by its value at time t = 0, K (0).
(b) Kinetic energy of the two-dimensional disturbances (the evolving KH billow) normalized
by K (0). (c) Buoyancy flux H . (d) Dissipation rate D . (e) Irreversible mixing M plotted
for the four cases considered in this study plus the case from MP1. Line attributes are:
dashed thick solid line for c1-2000-0.04; thick solid line for c1-2000-0.12; dotted line for
c1-2000-0.16; thick dashed-dotted line for c1-2000-0.2; and thin solid line for c1-1000-0.12.

Figure 13(c) shows the time variations of the buoyancy flux, H , which quantifies
the exchange between the kinetic and potential energy reservoirs and is an important
parameter in the parametrization of mixing in large-scale climate models of the oceans
and atmosphere. As the Richardson number increases from small values to moderate
values (e.g. from 0.04 to 0.12), the maximum amplitude of the KH billow does not
change significantly and the peak in H increases slightly with stratification. However,
as Ri0 tends towards large values (e.g. 0.16 and 0.2), the maximum wave amplitude
decreases considerably leading to a decrease in the maximum buoyancy flux. For all
cases, H peaks at the time of saturation of the KH billow and for time periods
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FIGURE 14. Contours of the local dissipation rate, computed for various times for the case
c1-1000-0.12 considered in MP1. Contour levels range from 3.75 × 10−4 for dark red to
0.75× 10−4 for dark blue.
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FIGURE 15. Same as figure 14 but for the case c1-2000-0.12.

beyond t∗, it decreases, becomes negative and then oscillates about zero before a
second rise occurs due to vortex pairing.

Figure 13(d) records the time variations in the total rate of kinetic energy
dissipation, D . To help in understanding these time variations, we have plotted
colour maps of the dissipation rate for our simulations in figures 14–17. We interpret
figures 13(d) and 14–17 together. In general, the preturbulent dissipation rate is
considerably smaller than that after the transition to turbulence. On the other hand,
the irreversible mixing is still relatively high in the preturbulent phase due to roll-up of
layers of light and heavy fluid. Thus, in the denominator of (7.14), D is smaller than
M in the preturbulent phase leading to large values (∼1) for the mixing efficiency.

Figure 13(d) shows that the maximum amount of dissipation occurs after the KH
billows saturate and before the onset of the pairing process. The rapid increases in
the dissipation curves are due to the fast roll-up of the KH wave. The decreases in
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FIGURE 16. Same as figure 14 but for the case c1-2000-0.16.
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FIGURE 17. Same as figure 14 but for the case c1-2000-0.2.

the dissipation rate curves are due to fast draining of the vorticity from the braid
which is characteristic of the onset of the pairing instability. This can be seen in
figures 14(c), 15(c) and 17(c). The second rise in the curves of figure 13(d) are due
to vortex pairing which leads to formation of a new braid and roll-up of the adjacent
cores into a single core. Comparing the solid thick and solid thin lines in figure 13(d),
which correspond to cases c1-2000-0.12 and c1-1000-0.12, respectively, shows that
the lower-Reynolds-number case has a considerably larger dissipation rate. Since in
both simulations the background velocity and density profiles are identical, a higher
Reynolds number should be interpreted as implying a higher momentum diffusivity.
Therefore, it is expected that the more viscous case (i.e. the lower Re case) will have
larger dissipation. Apart from the difference in magnitude between the two curves,
the c1-2000-0.12 curve shows a small enhancement in the dissipation rate for t > 80.
This is due to the braid deformation and formation of secondary vortices on the
braid as shown in figure 15. A similar behaviour is observed for case c1-2000-0.16
as shown by the dotted curve in figure 13(d) and by the dissipation contours in
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figure 16. Investigating the effect of stratification on dissipation by comparing the
Re = 2000 cases in figure 13(d), we find that D is a non-monotonic function of
Ri0. The dissipation rate increases (by nearly one order of magnitude) from the case
with Ri0 = 0.04 to cases with Ri0 = 0.12, 0.16. This is due to the increase in the
baroclinicity which leads to larger shear in the braid and in the vorticity bands in the
cores. The dissipation rate decreases as Ri0→ 0.2 due to the decrease in the amplitude
of the KH billow which leads to both a smaller number of vorticity bands forming
inside the core and a smaller braid tilt angle (which acts so as to reduce the baroclinic
production of vorticity). This can be seen by comparing figures 15, 16 and 17.

Figure 13(e) shows time variations in the irreversible mixing, M , with respect
to time. Similar to the dissipation rate, M peaks after the billows saturate. This
irreversible mixing in the preturbulent phase is associated with the statically unstable
regions induced within the billows. So, the contribution of the braid to this should
be negligible. However, comparison between the solid thick and solid thin lines
(corresponding to c1-2000-0.12 and c1-1000-0.12, respectively) reveals an increase
in the mixing for the Re= 2000 case for t > 80. This occurs for two reasons. First, the
braid deformation induces further irreversible mixing by forming small-scale structures
on the braid as can be seen in figure 15. A second and more important reason is that
once the secondary vortices form on the braid, they propagate around the periphery
of the cores distorting their internal structures and by so doing further enhance the
irreversible mixing. This can be seen in figures 15 and 16. The Ri0 = 0.16 curve in
figure 13(e) shows a significant enhancement in M in the form of a second peak at
t ∼ 108 which is the time when secondary vortices form at the corners of the braid
(see the t = 108 frame in figure 16). Comparing the Re = 2000 cases in figure 13(e)
shows a weaker but similar dependence on Ri0 to that in figure 13(d) which occurs for
the reasons explained above.

Figure 18(a,c,e,g) show plots of the potential energies and figure 18(b,d,f,h) show
the mixing efficiencies for our four cases. According to (7.6), (7.11) and (7.12),
P −Dpt−P(0), PB−DPt−PB(0) and PA(t)−PA(0) are merely time integrals of
H , M and S , respectively. At early stages of the billow roll-up, most of the increase
in the potential energy is due to stirring. Thus, the available and total potential energy
curves almost coincide. The increase in the available potential energy is a reversible
process and some of this energy is returned to the kinetic energy reservoir. This is
shown by the slight rise followed by a rapid fall in K in figure 13(a). This reverse
transfer of energy is imperfect, however, and part of the available potential energy is
lost to irreversible mixing and a corresponding increase in the background potential
energy. So, as the gap between the available and total potential energies grows larger,
so does PB. Comparing the c1-2000-0.12 and c1-1000-0.12 cases in figure 18(c)
shows a dip in P for the Re = 2000 case at t ∼ 90 due to the braid instabilities. At
approximately the same time, a rise is observed in the PA curve of the Re = 2000
case which is due to the stirring induced by the braid deformation and the roll-up of
secondary vortices on the braid.

Figure 18(b,d,f,h) show instantaneous and cumulative mixing efficiencies. The
curves are cut prior to the onset of significant growth of the pairing instability to focus
on the preturbulent mixing phase only (based on our stability analysis, we assume that
by the time of onset of the pairing instability, the SCI would already have influenced
the onset of turbulent collapse). As expected, Ei possesses values near unity due to
small dissipation rates. The oscillations subsequent to the initial peaks in Ei are due to
re-creation of statically unstable regions inside the cores as the KH billows continue
to roll up. Comparing the cumulative mixing efficiency curves for the four Re = 2000
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FIGURE 18. (a,c,e,g) Time variation of P − Dpt −P(0) (solid line), PA(t)−PA(0) (dash-
dotted line) and PB − DPt −PB(0) and (b,d,f,h) time variation of the instantaneous mixing
efficiency Ei (solid line) and cumulative mixing efficiency Ec (dashed line). Cases: (a,b)
c1-2000-0.04; (c,d) c1-2000-0.12 and c1-1000-0.12; (e,f ) c1-2000-0.16; (g,h) c1-2000-0.2.
In (c,d), the thick lines correspond to case c1-2000-0.12 while the thin lines correspond to
c1-1000-0.12. The vertical dotted lines in (a,c,e,g) show the climax time t∗ for each case.

cases, we find that the efficiency of mixing decreases monotonically with increase in
Ri0. It was shown in Caulfield & Peltier (2000) that Ec increases (slightly) with Ri0

for 0.025 < Ri0 < 0.1. Our results, however, demonstrate that Ei decreases as Ri0 is
further increased beyond 0.1 and tends to 0.2. To explain the increase and decrease
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FIGURE 19. Cumulative mixing efficiencies for the preturbulent phase obtained by
combining the results of our work with those of figure 5 of Caulfield & Peltier (2000).

in Ec with Ri0, we consider figure 13(d,e) simultaneously. For very small Ri0, the
dissipation rate is very low and, hence, E is large. As Ri0 increases from 0.04 to 0.12,
D increases and so does M . The net effect is a very slight decrease in the cumulative
efficiency (for Re = 750 the net effect is a very slight increase as shown in Caulfield
& Peltier (2000)). As Ri0 is increased from 0.12 to 0.2, the irreversible mixing M
decreases substantially (due to the smaller core amplitudes) while the dissipation rate
does not decrease as significantly as M . Hence, the net effect is a decrease in Ec

from ∼0.65 for Ri0 = 0.12 to ∼0.4 for Ri0 = 0.2. Figure 19 shows the plot of the
preturbulent cumulative mixing efficiency versus Ri0 obtained by combining our results
with those of Caulfield & Peltier (2000). Even though our results were obtained for
cases with Re = 2000 whereas (Caulfield & Peltier 2000) cases were for Re = 750,
preturbulent Ec does not seem to be particularly sensitive to Reynolds number for the
range common to the two studies (0.04< Ri0 < 0.1) and it is a much stronger function
of the Richardson number. Figure 19 clearly shows the non-monotonic variations in
preturbulent Ec with the stratification. It is important to note that we have limited the
range of time for our time series of mixing efficiency to the time period prior to the
emergence of transition-inducing three-dimensional instabilities.

8. Discussion
We have herein extended the analyses presented in MP1 by performing secondary

stability analysis for a sequence of density stratified unstable shear layers at higher
Reynolds number and for a range of Richardson numbers. As one of the important
findings of this work we showed that the growth rate of SSI of the braid is
increasingly suppressed as a function of time by the growth of the background KH
vortex cores due to the evolution of the strain field. The degree of this suppression is
an increasing function of the stratification level, becoming larger for larger values of
Ri0. The infinite-length-of-the-braid assumption of Corcos & Sherman (1976) is only
valid at earliest stages of flow evolution when the cores remain compact. We have
shown that secondary vortex formation on the braid may be triggered by the growth of
another secondary instability (such as the LCVI or SVBI). The wavelength and growth
rate of the vortices formed on the braid in this fashion can be affected by precursor
instabilities. It is very important to note that these braid secondary vortices are not of
SSI type.
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Further new modes of secondary instability were also revealed by the analyses
described in this paper. One of these, which we have labelled SCDI, tends to inflate
the vortex cores on the diagonal (almost parallel to the braid). This mode is of a
three-dimensional nature with small wavenumbers and weakens at high Richardson
numbers. No evidence of the growth of this mode was observed in our simulations
for the two-dimensional background flows that were subjected to secondary stability
analyses. A second new three-dimensional instability discovered in this work was the
LCVI, which corresponds to formation of vortices at the tips of the fully developed
vorticity bands within the cores. This instability exists over a very large range of
spanwise wavenumbers (the entire range considered in this study which is from 0 to
12 in non-dimensional units) and its growth rate increases with increase in either the
Reynolds or Richardson numbers. Finite-amplitude growth of this mode was observed
in our two-dimensional simulations. Of greater importance than either of these new
modes is most probably the SPI discussed in MP1, which has herein been shown
to exist over the broad range of stratification levels considered. In all cases, SPI
has been shown to develop high growth rates at large wavenumbers comparable to
those of the SCI. SPI (along with SCI) may well play a critical role in inhibiting
the occurrence of the pairing interaction at high Reynolds numbers (associated with
geophysical flows) which is fundamental to the support of an upscale cascade of
energy in stratified turbulence via this mechanism (see e.g. Peltier & Stuhne (2002)
for a general discussion). Although the SPI mode has a two-dimensional counterpart
it is much stronger in three dimensions. The pairing instability itself was found to
be characterized by only weak sensitivity to the stratification (compared with other
secondary modes). As this mode exists from very early stages of flow evolution, and
as it maintains its growth rate for a long period of time, it ultimately leads to vortex
pairing in two-dimensional simulations. In a fully three-dimensional flow, however, we
expect the interaction of one or more of the instabilities we have found to mark a
rapid transition to turbulence will serve to inhibit the occurrence of vortex pairing.

Our analyses have also shown that increase in the Reynolds number leads to
increase in the growth rate of all of the secondary instabilities found by our stability
analysis. An increase in the Richardson number from small to moderate values
(0.04–0.12 in our study) leads to an increase in the growth rate of the secondary
instabilities while further increase in the Richardson number from moderate to high
(0.12–0.2 in our study) stratification levels leads to decrease in the growth rate due
to the stabilizing effects of the stratification. In general, most of the findings of our
analyses in this paper are in agreement with the predictions of the heuristic model of
MP1.

Our analyses of the energetics of the flow demonstrated that while the primary KH
wave absorbs its energy from the background kinetic energy reservoir, the secondary
instabilities absorb their energy from the available potential energy reservoir. Buoyancy
flux, viscous dissipation, and irreversible mixing associated with the preturbulent KH
wave were all characterized by an increase–decrease behaviour with increase in the
stratification level. It was shown that even though the viscous dissipation is not
greatly sensitive to stratification level in the preturbulent phase, the irreversible mixing
does increase considerably with Ri0. Our analyses revealed that emergence of braid
instabilities leads to a slight increase in the viscous dissipation as well as to a
larger increase in the irreversible mixing thereby increasing the preturbulent mixing
efficiency. Our results (for 0.02< Ri0 < 0.1) together with those of Caulfield & Peltier
(2000) (for 0.02 < Ri0 < 0.2) show an increase in the cumulative mixing efficiency
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with increase in Ri0 from small to moderate levels, and a decrease in the efficiency
with further increase of Ri0 from moderate to high stratification levels.

Even though the range of Reynolds number considered in our stability analyses was
low compared with geophysical flows, it was sufficiently high to reveal the existence
and characteristics of various new and important secondary modes which have been
reported in recent observations (see Geyer et al. (2010) for evidence of a train of
secondary shear vortices on the braid, similar to the eigenfunction of SSI reported in
our work; see Moum et al. (2003) for a possible example of SPI forming in a KH
billow growing on the interface of an internal solitary wave approaching the shore).
Moreover, our stability analyses validated the predictions of the heuristic model of
MP1 (which extend to Re = 104 and Pr = 7) for Re < 2000 and Pr = 1. Therefore,
that model can provide insight into a new interpretation of geophysical flows which
was not possible based on laboratory experiments of stratified shear layers (due to
their limited range of flow parameters). Based on the work in MP1 and this paper,
we conclude that the SCI will remain a key three-dimensional instability in transition
to turbulence at high Reynolds (O(104)) and Prandtl numbers in the range 1–8. This
regime is relevant for both the heat stratified oceanic and atmospheric shear layers.
Moreover, SSI of the braid is expected to grow at early stages of flow evolution at
Reynolds numbers beyond a critical value (which depends on both Pr and Ri0). Below
this level, isolated shear vortices (not an SSI wave train) may still roll up on the braid
due to deformations induced by other local instabilities which grow on the braid (such
as SPI, SVBI) or which grow inside the cores (such as the LCVI). The likelihood of
occurrence of SSI diminishes at very small stratification levels. Moreover, at a fixed Re
and Ri0, increase in Pr suppresses the SSI. It will be interesting to investigate whether
it will be possible for the extended braid shear instability (which was revealed by our
analyses and shown in figure 16-MP1) to emerge so early and so vigorously at early
stages of flow evolution at sufficiently high Reynolds numbers to distort the internal
core structure and inhibit occurrence of the core convective instability.

The SPI, which was analysed in detail for the first time in MP1, might also emerge
in subranges of the Ri0–Pr–Re space in which SSI and SCI do not destroy the
braid structure required for emergence of the SPI. Further investigation is needed
to determine the parameter range over which SPI has a chance of emerging, but
according to our analyses in MP1, γs/Ω < 0.1 seems to be a qualitatively valid
criterion.

Even though vortex pairing seems to be inevitable in two-dimensional simulations
of KH waves, we suspect that the ‘zoo’ of secondary instabilities discussed in MP1
and in this paper, some of the inhabitants of which are highly three dimensional,
will have the potential to facilitate a rapid turbulence transition at high Reynolds
numbers and thereby to inhibit vortex pairing. This, in addition to the suppressing
influence of stratification on vortex pairing (as discussed in this paper), need to
be fully investigated using three-dimensional simulations to identify the regions in
parameter space in which pairing is possible and regions in which it is suppressed.
Such simulations are also required to study the nonlinear interactions among the
inhabitants of the ‘zoo’ of instabilities identified herein as well as their implications
for turbulence transition and mixing efficiency.
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